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J. Phys. A: Math. Gen. 13 (1980) 2501-2507. Printed in Great Britain 

Supersymmetric non-polynomial vector multiplets and 
causal propagation 

S Desert and R Puzalowskie 
Department of Physics, Brandeis University, Waltham, MA 02254, USA 

Received 18 December 1979 

Abstract. The infinite class of massless spin-1 actions formed from the two algebraic 
invariants FuJu“, F,, *F’“ which allow a supersymmetric extension is derived. It is shown 
that (to second nonlinear order at least) these extensions all have causal propagation, even 
though only one of them (Born-Infeld) was causal before supersymmetrisation. 

1. Introduction 

Supersymmetric theories have the remarkable property that they have positive energy 
(Iliopoulos and Zumino 1974) and consequently that they do not admit spacelike 
eigenvalues of the total four-momentum, i.e. they have no global tachyonic solutions 
(Deser 1979). Since non-polynomial theories with higher derivatives usually have 
causality problems, a natural question is whether it is possible to construct sypersym- 
metric non-polynomial Lagrangians, and whether these are locally causal. We investi- 
gate this for spin-1 actions, which we try to extend supersymmetrically, starting from 
the general non-derivative form which can depend only on the two algebraic Maxwell 
invariants, J 2?n(~2,  F*F).  In performing the construction, we expected the Born- 
Infeld theory to be the appropriate candidate for a supersymmetric extension, because 
this non-polynomial theory is the only massless spin-1 theory, aside from Maxwell’s, 
which is causal and possesses a unique characteristic cone (Plebanski 1968). It turns out, 
however, that the Born-Infeld theory is but one of an infinite class of theories which 
allow supersymmetric extensions. Since the supersymmetry transformations are the 
usual order-preserving ones, SA, = iGy,tc,, Stc, = - F ( m ) ,  functions at any polynomial 
order preserve the supersymmetry, and we can investigate propagation properties 
order by order. One can then show that, to sixth order in FPy at least, all these models 
remain causal by virtue of the interaction structure. Thus supersymmetry improves 
causality, even of those models whose bosonic ancestors were acausal. 

2. Lagrangian construction 

The general gauge-invariant Lagrangian LF for a massless spin-1 field A, which 
depends on F,” = a,A, -&A,, (but not on explicit derivatives) is a function of the two 
algebraic invariants X = F””F,,,, 5 FF, Y = *FF) *FW“ = &wYmFm7. We may expand it as 
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2 n - 2 u t l  ) Y2". = --+ C C + a 2 n - 2 u + 1 , 2 ~  
X " "  
4 n = l u = O  

The a coefficients are proportional to a dimensional coupling constant g - L4 with 
ntm-1  - g 

We have restricted ourselves to parity invariant actions, although the following results 
are also valid in the general case. In particular the Born-Infeld Lpl)  is given by 

gfcBr)= -[-det(~,u+g1'2F,,)]1'2+1 =-(1+$gX-&g2Y2)1'2+1. 

The coefficients are therefore, in units g = 1, 

Our aim is to construct a supersymmetric extension of (l), that is a supersymmetric 
Lagrangian which contains L F  as its pure bosonic part. In order to achieve this we must 
introduce a fermionic partner for the field A, and an auxiliary field. The smallest 
supermultiplet containing the spin-1 field A, is 

(A,, &, D) 
where 4, is a Weyl spinor and the auxiliary field D is a pseudoscalar. The supertrans- 
formation is 

SA, = i(acr,$ - & T ~ L C ~ )  84 = uCLuaF,, + i d  SD = -6,q%u*LCu - au' a,& 
(3) 

For our purposes we found it most convenient to use the superfield formalism. The 
corresponding superfield W, whose components are (A,, $,, D )  is obtained by apply- 
ing to the superfield 

v(e, 8, X )  = vt(e, 8; X) 

the covariant derivative D.D'D,, that is 

W, = 8$/30, V 

with (Wess 1978 and references therein) 0, = 8/88" +idk:,e"a,, Dk = (0,)'. In terms 
of W, the free action invariant under (3) is 

=I d4x[-$i($u a$-HC)-$X+$D2],  

the usual (1, f) supermultiplet in terms of Weyl spinors. In order to construct L F  in a 
supersymmetric way, we generate higher powers of X and Y in the last component of a 
superfield by multiplying superfields which are derived from W,. Because 

D,w* - 0  
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one may also build 

It turns out that Was, contains X and Y with derivatives only. This is also the case for 
invariants arising from W a p  WDp and its powers, although W” W.. is of importance for 
the construction as we shall see below. We are left with the field W2W2 as the only 
possibility that gives rise to invariants which contain X 2  and Y 2 .  We explicitly write out 
the last component Dwzwz which is of interest here: 

D ~ ~ ~ ~ = L F + L F , G + L + + L D  (4) 
where 

L F  E 26[x2 + Y 2 ]  

LF,G -2*[*F’” ~ p F , ~ ~ ~ u & - 2 i F u u F , , ( ~ ~ u  a ” $ - H C )  

- $ix(il/cr ad - H C )  + Y(*C a$ + H C ) ]  

LJ, = ~ ‘ O ( @ U  a&(a$&-$(*a,4)($ a”$) +g[w a”(& a,&) + H C ] }  

L D ~  - 2 8 { - ~ 4  +D’[x + 3i(4u a& - H C ) ]  

+~D(~’”F, ,*u”&-*F, , (*u~ ~ ” J - H c )  -2F”” aDJ/a,&}. 

So far we have constructed a nonlinear spin-1-spin-$ system up to first order in the 
coupling constant g. Because W, is nilpotent it is not possible to produce higher-order 
terms in X and Y from powers of W,. However, the field WPp is not nilpotent, and 
forming 

wap WO,@ 

we observe that this superfield has the first component Aww. .  given by 

( 5 )  1 EA w . ~ . .  = D2 - $X - $i Y. 

We mention that W” W.. and W.. W” are the only superfields (besides W 2  and W 2  Wiz) 
derived from W, which contain combinations of X and Y. From ( 5 )  we learn that the 
combined fields 

WF w” w.. + W.. W“ and w*F i( w.. - W.. W*’) 
have the first components 

1 QA wF = D2 - $X $ A w . ~  = 5Y. 
It follows that 

2 - 2  
S , m  = ( W F ) ~ ( W * F ) ~ W  W 

has (among other contributions) a term proportional to 

X“Y”(XZ+ Y 2 )  

in the last component. Hence it is possible to construct a supersymmetric extension of 
LF given by (1) if we can find coefficients b , ,  such that in a given order gZm-’(m a1) of 
the coupling constant the relation 

m - 1  

V = O  u = o  
Y2”(X2 + Y 2 )  (7)  2m-2u-2 2m-2u 2 a2m-2v92uX b 2 m - 2 u - 2 . 2 3  
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together with the corresponding relation of order g"-' holds. It immediately follows 
that this construction is only possible if the coefficients an-u,u which determine the order 
g"-' part of LF obey the constraints 

and in this case b , ,  is 

n 

b z m - ~ n - l , ~ n  = 1 ( - 1 ) ' a 2 m - 2 n + 2 u + 1 , 2 n - 2 " .  
V = O  

Note that the last term in (7), ( X 2  + Y2) ,  is the famous Euler-Heisenberg first nonlinear 
term in the Born-Infeld action, z g  ( X 2 +  Y'). Since the equations (8) are the only 
constraints which are imposed on L F  by supersymmetry, their solutions generate all 
Lagrangians LF which possess a sypersymmetric extension in the sense stated above. 
These can be either polynomial or not, since the constraints only link a's of the same 
order. The corresponding supersymmetric Lagrangian LS is 

1 2  

where 

In the polynomial case, the sums are truncated at the desired order. Note, however, that 
we use the term 'polynomial' before elimination of the auxiliary field, D. The latter can 
be expressed as a non-rational root of X and &$ combinations. It will of course be 
polynomial in &$, but their coefficients will in general be non-polynomial in X,  and so 
will the action after elimination of D. 

3. Solving the constraints 

Before giving the general solution of the constraints (8) we show that the Born-Infeld 
theory has a supersymmetric extension. Considering f'"'(X, Y2)  as a generating 
function of the coefficients given in (2), we set 

y 2  = - x 2  

and obtain 
f '"'(X,  - X 2 )  = -& 
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which proves the assertion that (8) is satisfied, since X is arbitrary. For the general 
solution of (8) we write in the form 

an tm 
G , m  = ax“ aym f(X, Y2)lX=Y=0. n !  

The constraints (8) become 

The equations (1 1) are linear homogeneous difference equations of order 2m which 
have the solutions 

SK and lK each form a set of m constants corresponding to orders gZm-l  and g Z m  
respectively. In particular we find that up to order g all LF’s coincide with the truncated 
Born-Infeld LP’), because we may absorb an overall constant in g.  At order g 2  we have 
coincidence of LF and LI.”” with respect to the relative coefficients of the two cubic 
invariants X 3  and Y2X. However, since there are no suitable boundary conditions to 
be imposed on the C’s from the construction alone, (12) defines an infinite class of 
supersymmetric Lagrangians, that is, we are no longer able to identify all the theories 
with the truncation of Born-Infeld in higher orders, having used up the freedom of 
g-choice to get agreement to order g .  Of course, only the Born-Infeld case has a purely 
bosonic part which is causal. 

4. Causality 

The result of our construction shows that the Born-Infeld theory is in fact not the only 
possible non-polynomial theory which allows a supersymmetric generalisation. 
Moreover, it is possible to truncate the Lagrangian (10) to any order without losing the 
global causal behaviour, guaranteed by the supersymmetry algebra with (0, Q} = 2 9 ,  
since the transformation rules (3) are of homogeneous order in the fields. But the pure 
spin-1 part we started with no longer generates the principal part of the equations of 
motion, i.e. the highest derivatives terms which determine the propagation behaviour. 
In fact, if we look for instance at (4) which is the leading term in a supersymmetric 
Lagrangian up to first order in g,  we see that the principal part is generated by 
interactions, which contain higher derivatives than the original principal part generated 

How do these theories behave locally? Global causality does not guarantee that 
there is no locally acausal behaviour, since only integrated quantities enter in the global 
algebra. In order to check the local propagation character, we determine the charac- 
teristics of the equations of motion (Courant and Hilbert 1965), which can be done 
separately for any supersymmetric truncation of (10). Up to order g the principal part is 
given by the expression (4), which leads to second-order equations for F and 4 and to an 
algebraic constraint for D. Upon eliminating D by expanding it in powers of g and 

by (1). 
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inserting it into the equation of F and +, we obtain up to the required order the 
following principal part: 

where 

M&j = (+C70J)?y1’&j 

d F U  = -J*7yY+(*u~)((TYiJ) 

MF)ij = (++JJ)vcLySij 

and N, PtB), P(E),  jB ,  j E  and V are functions of the fields F and $ and their first-order 
derivatives, By writing g, E, JI and 6 in terms of a 10 X 1 matrix and replacing a, by n,, 
the unit normal to the characteristic surface S to be determined, we obtain from (13) the 
characteristic determinant C : 

I 0 0 J 0 I - u ’  \‘I,/ - 

l o  0 0 

Here A? = MCLYn,nv etc. The roots of the polynomial 

C(n,) = 0 (14) 

then determine the characteristic surface. The factorised structure of C shows that the 
off-diagonal coefficients N, P(B) and P(E) do not have any influence 0x1 the roots of (14), 
which are separately determined by the highest derivative parts of the spin-1 and spin-; 
field. It follows immediately that det &(B,E)- n6 and det 4 - n4, that is the charac- 
teristics are the usual light cones. Thus, up to this order causality holds locally as well. In 
order g2 the equations of motion for F and 9 are third-order equations and the field D 
up to this order is 

D = 4g[a~J; . .v*u, iJ+~FILY(ay*C7,J+HC) +~*FLL”(a,+~,JI-HC)]+o(g2). 

Due to the first derivative of F in D there are third-derivative contributions in the 
spin-1 equation originating from appearance of 8, a 3  terms in the equations at order 
g. Taking this into account, we end up with the principal part 

Again C has block form, i.e. the coefficients P do not affect causality, and we learn that 
also in this order the characteristics are light cones. However, in all higher orders the 
coefficient matrices of F and + in the principal parts cause technical problems, and we 
have not checked what happens there. We stress that switching off the (I/ and D 
interactions leaves one with the truncated non-supersymmetric spin-1 part, which is 
acausal, because there only first derivatives of F,,, enter and these are always acausal, 
except Born-Infeld (Plebanski 1968). This follows from the fact that although the 
characteristic determinant of Born-Infeld theory is of course causal order by order in 
F,,,, the reverse is false: one cannot truncate the action and then obtain a causal 
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determinant. An alternative way to check local causality in higher orders is to keep the 
auxiliary field D as a dynamical field and add it to the system of equations for F and + by 
differentiating the second-order equation in which it naturally appears. The contribu- 
tion of D to the principal part is then 

Q””’ a’ a, a,F,, +RAC” a’ aA a,D + (TA& a’ 8, a,$ + HC) = K. 
In considering this system it turns out that the principal part of the $ field always 
decouples from the F-D system and may therefore be calculated separately. At order 
gz F and D also decouple, i.e. Q = 0, and the coefficients R in this case are given by 

RAW = (++i@)qAp. 

The relevant coefficients for F and $ are the same as in (15). This shows causal 
propagation of the auxiliary field D and proves local causality for the g2-truncated 
theory to all orders in g. In this case, if we switch off the 9 and D interactions, none of 
the theories considered remains causal. 

5. Conclusion 

We have learned that supersymmetry improves local causal behaviour by introducing 
higher-order interaction terms. Of course, not all such higher-order terms would lead 
to causal theories. For example, in order to generate a leading second-order derivative 
term in the equations of motion of the spin-1 field, we might have chosen to add the 
(parity preserving) term 

Y dAFFA@&& 

to the action. This is an acausal theory, as can be shown by applying the procedure 
described above. But it is also impossible to incorporate this term into a larger, 
supersymmetric, action, since the number of fields is odd, and cannot be expressed in 
terms of superfields. On the other hand if we restrict ourselves to terms in the action 
which have the same power of fields as in the supersymmetric choice (14), we find that 
the only possible second-order derivative term is the causal one picked by supersym- 
metry. 
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